Surgical vs Nonsurgical Approaches for Proximal Hamstring Injuries

Brian Vickaryous MD
Fracture Care Center

The Problem
- 12-15% of total injuries
- Re-injury rate is 12-41%
- Secondary injury more severe than index
 - time away from sport twice as long
- Professional athlete cannot perform for 14-27 days

1992 Barcelona

Hamstring Anatomy

Biarticular – Sciatic Nerve
- Biceps femoris
 - Long head
- Semitendinosus
- Semimembranosus

Monoarticular – Common PN
- Biceps femoris
 - Short head

Function
- Absorb kinetic energy
- Protect the hip and knee joint
 - Limit knee extension just before and during heel strike
 - Provide dynamic stability to A/P tibial translation
- The controlled extension produces an eccentric contraction – lengthening of the muscle while it fires

Hamstring Injury
- Predisposing sports
 - Sprinters - 1/3 of all injuries
 - Football, soccer, rugby - 1 in 5 injuries
 - Dancing, water skier
- Predisposing factors
 - Previous injury
 - Age
 - Weak hamstrings
 - Leg length discrepancy, cross pelvic posture
 - Flexibility, race, sex, warm up, fatigue, position?

Mechanism of Injury
- Well trained athletes and middle aged
 - Sprinting in full stride
 - Attempting to overstride
- Sudden hip flexion/knee extension causing hamstring contraction
 - “The splits” on a slippery floor
- Presentation
 - Stiff-legged gait pattern
- Posterior thigh pain
- Ecchymosis
- Difficulty sitting

Classification
- Type 1 - osseous avulsion fracture
- Type 2 - musculotendinous junction
- Type 3 - incomplete tendon avulsion
- Type 4 - complete avulsion, no retraction
- Type 5 - with retraction
 - a - no nerve involvement
 - b - nerve tethering

Physical Exam
- Ecchymosis posterior and middle thigh
 - Most common site is proximal muscle tendon junction of long head of biceps femoris
- Sciatic nerve injury
 - Neuropraxia of peroneal nerve
- Take off the Shoe Test
 - Take off shoe of the injured leg with healthy leg
- Radiographs
 - Bony avulsion
 - MRI
 - Complete versus partial tear
 - Retraction

Take off the Shoes

Physical Exam

Radiographs

MRI

Literature Summary

Literature Review
- Few patients
- Klingele and Sallay
 - Primary repair in 11 patients
 - Surgery recommended in active patients and with chronic pain caused by sciatic nerve compression
- Chakravarthty et al
 - 4 patients
 - 2 of 3 treated nonsurgically had sciatic neuralgia
 - All 4 with significant knee flexion weakness and pain

Literature Review
- Cross et al
 - Chronic complete in 9 patients
 - 48 months postoperative testing
- Hamstring strength – 60%
- Endurance – 57%
- Brucker and Imhoff
 - Functional assessment in 8 patients
 - Cybex dynamometer isokinetic testing of maximum hamstring torques and H-Q
peak torque at 60 degrees/s
 - F/u 20 months average
 - 4 patients (50%) reported incisional pain

Literature Review
- **Sallay et al**
 - 12 patients, chronic injuries, waterskiiers
 - Time to evaluation – 5.6 months
 - 5 repaired because of **persistent limitations**
- **Orava and Kujala**
 - 8 patients, 40 years of age
 - Sudden forceful hip flexion with knee extended
 - Function and strength improved in the five patients who underwent repair <2 months
 - Loss of function and strength in 3 patients with delayed repair
 - Recommended prompt repair of combined hamstring tendon to its origin

Literature Review
- **Cohen and Bradley**
 - Seven patients, 8 hamstring repairs
 - 5.7 days after injury
 - Return to athletics – 8.5 months average
 - All patients satisfied
 - 6/7 returned to preoperative levels

Management
- JAAOS- Cohen and Bradley
 - June 2007
 - Single tendon avulsion + retraction < 2 cm
- Athletes may return to high level performance
- 6 weeks after
 - Three tendon tear
- Significant retraction of 5cm
- Surgical repair
 - Two tendon - ?
- Younger, active
- Retraction > 2 cm

Nonsurgical Management
- Single tendon rupture
- Multiple tendon with minimal retraction
- Rest, ice, modalities
- NSAID, gentle stretching
- Therapeutic exercise and gradual return over 4-6 weeks

Nonsurgical Management
- Hamstring Syndrome
 - Knee flexion weakness
 - Difficulty sitting
 - Deformity
 - Pain worsens with stretching and exercise
 - If persistent
- Surgical release and sciatic nerve decompression
• 88% success rate (52 of 59 patients)

Scarring Sciatic Nerve

MRI - Prognosis

Surgical Management

- Bony Avulsions versus Tendinous Origin
- Prone, transverse incision at gluteal crease
 - To fascia, transverse incision
 - Posterior femoral cutaneous nerve
 - Elevate gluteus maximus superiorly
- Hamstring fascia visualized
- Longitudinal incision
- Large hematoma after loose fibrous tissue
 - Sciatic Nerve can be palpated

Open Treatment

Surgical Management

- Tendons or bony avulsion mobilized
- Ischial tuberosity identified
 - Lateral aspect cleared of soft tissue
 - Semimembranosus is most lateral
 - Semitendinosus and long head biceps medial
 - Suture anchor repair with knee flexed
- Wound closure
- Custom hip orthosis that restricts hip flexion of 15-30
- Toe touch with crutches, may consider scooter

Operative Treatment

Endoscopic Hamstring Repair

Rehabilitation

- Phase I
 - 10-14 days - Toe Touch WB
 - Next 3 weeks - Advancement to 25% WB
 - Week 2 - Passive ROM of knee and hip
 - Week 4 - Active ROM
 - Week 6 - Brace discontinued

Rehabilitation

- Phase 2
 - Week 6
- Full WB
- Progressive active and passive ROM
- Isotonic exercises with limited ROM, avoiding terminus
- Core pelvic strength training
- Closed chain exercises
 - Week 8
- Isotonic exercises progressed
 - Week 10
- Isometric strength evaluation at 60 deg flexion

Rehabilitation

- 10 weeks
- Dry land jogging
 - Full isokinetic evaluation at 60, 120, 180 deg/s and compared with nonsurgical side
- Allows for milestone and therapy specific planning
 - Return to sport
- When isokinetic testing 80% of unaffected side
- Typically between 6-9 months

Bibliography
- Delee & Dreez, Orthopedic Sports Medicine, 3rd edition, 2010